Step of Proof: p-id-compose
11,40
postcript
pdf
Inference at
*
I
of proof for Lemma
p-id-compose
:
A
,
B
:Type,
f
:(
A
(
B
+ Top)). p-id() o
f
=
f
latex
by (Auto
)
CollapseTHEN (((Unfold `p-compose` ( 0)
)
CollapseTHEN ((Ext)
CollapseTHEN (
C
Reduce 0)
)
)
CollapseTHEN (((Try ((Complete (MaAuto
))
))
)
CollapseTHEN (((Try ((
C
Fold `p-compose` 0)
CollapseTHEN (Auto
)
))
)
CollapseTHEN (((if (0
C
) =0 then SplitOnConclITE else SplitOnHypITE (0))
)
THEN (Auto
)
)
)
)
)
latex
T
1
: .....truecase..... NILNIL
T1:
1.
A
: Type
T1:
2.
B
: Type
T1:
3.
f
:
A
(
B
+ Top)
T1:
4.
x
:
A
T1:
5.
can-apply(
f
;
x
)
T1:
p-id()(do-apply(
f
;
x
)) =
f
(
x
)
T
.
Definitions
f
o
g
,
x
.
A
(
x
)
,
Unit
,
P
Q
,
P
&
Q
,
x
:
A
B
(
x
)
,
,
x
:
A
.
B
(
x
)
,
P
Q
,
if
b
then
t
else
f
fi
,
left
+
right
,
Top
,
f
(
a
)
,
p-id()
,
s
=
t
,
A
,
False
,
b
,
x
:
A
B
(
x
)
,
Type
,
t
T
Lemmas
ifthenelse
wf
,
eqtt
to
assert
,
iff
transitivity
,
eqff
to
assert
,
assert
of
bnot
origin